3.16.62 \(\int \frac {\sqrt [3]{c+d x}}{(a+b x)^{3/2}} \, dx\) [1562]

Optimal. Leaf size=366 \[ -\frac {2 \sqrt [3]{c+d x}}{b \sqrt {a+b x}}-\frac {4 \sqrt {2-\sqrt {3}} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right ) \sqrt {\frac {(b c-a d)^{2/3}+\sqrt [3]{b} \sqrt [3]{b c-a d} \sqrt [3]{c+d x}+b^{2/3} (c+d x)^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}{\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} b^{4/3} \sqrt {a+b x} \sqrt {-\frac {\sqrt [3]{b c-a d} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}}} \]

[Out]

-2*(d*x+c)^(1/3)/b/(b*x+a)^(1/2)-4/3*((-a*d+b*c)^(1/3)-b^(1/3)*(d*x+c)^(1/3))*EllipticF((-b^(1/3)*(d*x+c)^(1/3
)+(-a*d+b*c)^(1/3)*(1+3^(1/2)))/(-b^(1/3)*(d*x+c)^(1/3)+(-a*d+b*c)^(1/3)*(1-3^(1/2))),2*I-I*3^(1/2))*(((-a*d+b
*c)^(2/3)+b^(1/3)*(-a*d+b*c)^(1/3)*(d*x+c)^(1/3)+b^(2/3)*(d*x+c)^(2/3))/(-b^(1/3)*(d*x+c)^(1/3)+(-a*d+b*c)^(1/
3)*(1-3^(1/2)))^2)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*3^(3/4)/b^(4/3)/(b*x+a)^(1/2)/(-(-a*d+b*c)^(1/3)*((-a*d+b*c
)^(1/3)-b^(1/3)*(d*x+c)^(1/3))/(-b^(1/3)*(d*x+c)^(1/3)+(-a*d+b*c)^(1/3)*(1-3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 366, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {49, 65, 225} \begin {gather*} -\frac {4 \sqrt {2-\sqrt {3}} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right ) \sqrt {\frac {\sqrt [3]{b} \sqrt [3]{c+d x} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+b^{2/3} (c+d x)^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}} F\left (\text {ArcSin}\left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}{\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} b^{4/3} \sqrt {a+b x} \sqrt {-\frac {\sqrt [3]{b c-a d} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}}}-\frac {2 \sqrt [3]{c+d x}}{b \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(1/3)/(a + b*x)^(3/2),x]

[Out]

(-2*(c + d*x)^(1/3))/(b*Sqrt[a + b*x]) - (4*Sqrt[2 - Sqrt[3]]*((b*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3))*Sq
rt[((b*c - a*d)^(2/3) + b^(1/3)*(b*c - a*d)^(1/3)*(c + d*x)^(1/3) + b^(2/3)*(c + d*x)^(2/3))/((1 - Sqrt[3])*(b
*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*(b*c - a*d)^(1/3) - b^(1/3)*(c +
 d*x)^(1/3))/((1 - Sqrt[3])*(b*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/4)*b^(4/3)*S
qrt[a + b*x]*Sqrt[-(((b*c - a*d)^(1/3)*((b*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3)))/((1 - Sqrt[3])*(b*c - a*
d)^(1/3) - b^(1/3)*(c + d*x)^(1/3))^2)])

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r
*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rubi steps

\begin {align*} \int \frac {\sqrt [3]{c+d x}}{(a+b x)^{3/2}} \, dx &=-\frac {2 \sqrt [3]{c+d x}}{b \sqrt {a+b x}}+\frac {(2 d) \int \frac {1}{\sqrt {a+b x} (c+d x)^{2/3}} \, dx}{3 b}\\ &=-\frac {2 \sqrt [3]{c+d x}}{b \sqrt {a+b x}}+\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {a-\frac {b c}{d}+\frac {b x^3}{d}}} \, dx,x,\sqrt [3]{c+d x}\right )}{b}\\ &=-\frac {2 \sqrt [3]{c+d x}}{b \sqrt {a+b x}}-\frac {4 \sqrt {2-\sqrt {3}} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right ) \sqrt {\frac {(b c-a d)^{2/3}+\sqrt [3]{b} \sqrt [3]{b c-a d} \sqrt [3]{c+d x}+b^{2/3} (c+d x)^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}{\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} b^{4/3} \sqrt {a+b x} \sqrt {-\frac {\sqrt [3]{b c-a d} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 71, normalized size = 0.19 \begin {gather*} -\frac {2 \sqrt [3]{c+d x} \, _2F_1\left (-\frac {1}{2},-\frac {1}{3};\frac {1}{2};\frac {d (a+b x)}{-b c+a d}\right )}{b \sqrt {a+b x} \sqrt [3]{\frac {b (c+d x)}{b c-a d}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(1/3)/(a + b*x)^(3/2),x]

[Out]

(-2*(c + d*x)^(1/3)*Hypergeometric2F1[-1/2, -1/3, 1/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*Sqrt[a + b*x]*((b*(c
+ d*x))/(b*c - a*d))^(1/3))

________________________________________________________________________________________

Maple [F]
time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (d x +c \right )^{\frac {1}{3}}}{\left (b x +a \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/3)/(b*x+a)^(3/2),x)

[Out]

int((d*x+c)^(1/3)/(b*x+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x + a)*(d*x + c)^(1/3)/(b^2*x^2 + 2*a*b*x + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt [3]{c + d x}}{\left (a + b x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/3)/(b*x+a)**(3/2),x)

[Out]

Integral((c + d*x)**(1/3)/(a + b*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{1/3}}{{\left (a+b\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(1/3)/(a + b*x)^(3/2),x)

[Out]

int((c + d*x)^(1/3)/(a + b*x)^(3/2), x)

________________________________________________________________________________________